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ABSTRACT 

An apparatus is under construction to  measure the optical radiation 

produced when beams of ionized particles collide with gas  phase neutral 

molecules or atoms at meteoric velocities. The apparatus is described up  to 

its present s tage of development, with test resul ts  presented for A and F e  

ion beams. The system design for the case of F e  -. N is discussed in  

detai l ,  as is the proposed operating procedure for determining t h e  absolute 

emission cross-sections These measurements will be started within t h e  

next two months, and will b e  followed by measurements of the emission of 

radiation in N -. Ca collisions,  

+ + 
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1 . 0  INTRODUCTION 

The visible radiation observed when a meteor penetrates the atmos- 

phere cons is t s  almost entirely of atomic and molecular spectra,  and is 

apparently produced at some separation from the meteor's surface.  The 

conclusion is tha t  t h e  mechanisms principally responsible for t h e  observed 

light and ionization trails  are  various types of collisions between atmospheric 

gases  and particles either evaporated or rebounding from the surface. Depend- 

ing on the meteor speed (10 - 70 km/sec) and the particle mass, the inter- 

action energies lie in a n  approximate range 10 e V  t o  2000 eV.  In order to 

evaluate the relative importance of the various collision processes ,  i t  is 

necessary to know the pertinent cross sect ions over the  above energy range. 

Laboratory measurements of these  cross sections would not only enhance our 

knowledge of meteor dynamics, through proper interpretation of the energy 

transfer processes  responsible for the  observed light and ionization, but 

would a l so  add to  our knowledge of the physics of atomic and molecular 

interactions. 

The goal of the  work being performed under Contract NAS 1 2 -  143 is to 

develop a n  a'pparatus and to  measure the  cross  sections for several  important 

processes  pertinent to  t h e  problem of meteor dynamics. In particular, it is 

to provide data for the evaluation of emission cross  sections for the major 

spectral features produced in Fe --* N 

and to perform preliminary measurements for the case of N * Ca. The 

term "emission" cross  section is used because the observed radiation may 

be the  result  of a cascade  process as  well as direct excitation. Although 

atmospheric absorption prevents the observation of meteor spectra in the 

IR or W, important processes may occur and it is desirable to extend the  

laboratory measurements as far  a s  practicable into these regions. The 

select ion of optical components, which will be  discussed later,  l i m i t s  the 

Spectral range which will be measured to  1800 8 to 1. OF. 

+ 
collisions at meteoric velocit ies , 

+ 2 

2 
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A schematic diagram of the apparatus is shown in Figure 1. Develop- 

ment of the init ial  stages of the apparatus was described in  the first  Interim 

Scientific Report for Contract No. NAS 12-143, dated 1 August 1967. To study 

all significant meteor processes , the experimental apparatus is being designed 

and constructed for two main categories of experiments: (1) neutral-neutral 

collisions, and (2) ion-neutral collisions. A t  the time of t h e  first  report, the  

apparatus was essentially completed from t h e  ion source through the mass 

analyzer and drift-tube, and some design effort for the retarding lens had been 

done. While continuing the design of a charge exchange chamber necessary 

for experiments of category (11, i t  was decided, on the bas i s  of a literature 

survey and calculations of meteor collision dynamics a t  NASA-ERC, to inves- 

t igate processes  in category (2) first. This report gives an account of t h e  

design and construction of a collision chamber and accessor ies ,  for this  

purpose. 

The present state of the apparatus is indicated in the figure. The 

coll ision chamber itself is an aluminum cylinder inserted through the exper- 

imental region, and equipped with ports at both ends.  The experimental region 

is a vacuum housing of square cross section, mounted horizontally, and attached 

to  the  drift-tube exit flange by a flexible bellows coupling, which also contains 

the retarding lens .  The experimental region has been designed with enough 

volume to  allow a charge exchange chamber for producing atomic beams to be 

inserted between the retarding lens and the collision chamber in the  future. An 

adapter for attaching a vacuum monochromator above t h e  collision chamber 

completes the vacuum system. The entire apparatus (apart from power supplies , 

electronics,  and auxiliary vacuum system) is supported by the mounting plat- 

form, which also serves as a terminus for electrical  power and water distribution. 

Following a brief review of the early s tages  , t h i s  report describes the 

remainder of the apparatus up to  its present form, including test resul ts .  

Plans for the proposed experiments a re  discussed.  

1 - 2  
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2.0 ION BEAM FORMATION AND CONTROL 

In order to  obtain a beam of ions of a given spec ie s ,  traveling a t  

meteoric velocit ies,  it is necessary to form a beam of partially ionized gas  

from which ions may b e  extracted,  to focus the extracted particles into a 

controllable beam, to  filter it for the desired mass ,  and to adjust  it to the 

desired energy. One other feature is frequently a desirable characterist ic of 

an  atomic or ionic beam; that it be  modulated, so that selective detection 

methods can b e  employed to  extract a beam induced signal from noise and 

background. These features cover t h e  extent of t h e  ion dynamics in t h e  

apparatus described, and will be discussed in this  section. Figure 2 

i l lustrates t h e  electrical arrangement for this phase of t h e  apparatus. 

2 . 1  Review of Earlier Work 

The ion source itself is essentially as descirbed in the  first  

Interim Scientific Report, except for changes made in materials I heating 

arrangement and radiation shields to enable higher operating temperatures to  

b e  used.  It is of t h e  Nielsen type ,  (Reference 1) and is arranged in such a 

way that  t h e  discharge chamber can  be operated at a high potential relative 

to  ground. 

The beam is extracted through the 1 - 5  mm diameter source 

aperture by a conical extraction electrode which accelerates the ions to  a 

nominal energy of 2000 e V .  This electrode is followed by a three-element 

e inzel  lens and two electrostatic quadrupoles. The effect of this  array is to  

shape  the beam into a rectangular cross section (approximately 10 mm high 

x 2 mm wide) a t  the object plane of a 90 

electroformed copper drift-tube, whose entrance and exit apertures coincide 

with the  analyzer object and image planes,  provides for vacuum integrity 

through the magnet pole gap. 

slits at either plane to reduce aberrations and improve the mass selection. 

0 sector magnetic analyzer. An 

This design allows easy  installation of limiting 

The ion source and lens operating parameters were investigated 

2-1 
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and discussed in the earlier report. Lens control was accomplished by 

simply providing a separate  power supply for each desired potential. This  

system was unwieldy, and h a s  since been replaced with a single power 

supply and a voltage divider control network. Beam measurements were 

made with a multiple-element detector array, which was moveable along the 

beam axis. 

output of the magnetic analyzer and the retarding l ens ,  to  be  descirbed later 

in this section.)  A summary of the previously reported ion source and l ens  

studies follows: 

(The same arrangement has been used for ion beam studies a t  the 

The basic  parameters affecting t h e  ion source and lens operation 

a re  filament emission , anode voltage , axial  magnetic field , discharge 

pressure in t h e  plasma (determined by t h e  chamber temperature or the leak 

valve setting , depending on the beam material) , extraction gap , extraction 

voltage,  and lens electrode potentials. In addition, there is provision for 

rotation of t h e  lens  about its longitudinal axis to  align the beam image. The 

plasma could be  started with any emission current greater than 1 m a  (anode 

voltage set at 75 v) by proper adjustment of the gas flow and axial field. 

The plasma current was limited to 2 amps by the power supply. 

voltage and high axial field (2 - 3 amps through the solenoid) were observed 

to maximize the plasma current, aithough these depended on the gas flow 

set t ing.  

High anode 

The focused beam current did not maximize with the  same sett ings 

as  the plasma current. Of a total  beam current of 2 5  ma, 4 - 7 m a  could b e  

focused through a 10 mm x 2 mm sli t  at the design focus.  This value peaked 

at the minimum axial field and gas flow rate for which a plasma could be 

maintained. 

The parameters affecting ion source and lens operation were 

observed to  be  greatly interdependent , so an iterative adjustment technique 

was m o s t  successfu l  in maximizing the beam. I t  was a l so  clear that  the 

2-3 
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power supplies providing the lens  potentials were inadequate, and that  

higher voltages were needed. 

2 . 2  Present System Configuration 

2 . 2 . 1  Ion Source Modification 

To operate the  ion source on a plasma of iron vapor, or 

any of several  other low vapor-pressure meteoric constituents (Ni, Si ,  Ca) , 

requires that temperatures up  to  about 1500 C be  produced and sustained 

inside the discharge chamber. To  achieve this aim, and to provide indepen- 

dent control of t h e  heating and electron emission functions,  the dual- 

filament discharge chamber shown in Figure 3 was constructed. The design 

minimizes thermal s t r e s ses ,  and all parts subjected to  a severe temperature 

environment a re  of high-temperature materials: grade HP boron-nitride 

insulators,  graphite electrodes,  tungsten or molybdenum filaments, and 

molybdenum radiation shields.  

0 

In operation, the charge material may either be  inserted 

in sol id  form, leaked in as a g a s ,  or retained in a boron-nitrate or graphite 

crucible. The temperature may be controlled by the external heater,  while 

the plasma is initiated and sustained by electron emission from the  s m a l l  

central  filament. The four cylindrical heat shields and the d i sc  substantially 

reduce the power required to  heat  the source. 

power input of about 300 watts is required, of which about 100 watts a re  

supplied by the emission filament. 

To run an iron beam, a total 

The wiring diagram for the modified ion source is included 

in Figure 2 .  This is somewhat different than that shown in t h e  first Interim 

Scientific Report, s ince  an extra power supply is needed for the heater. A 

new anode supply provides a m p l e  power for the  plasma current (up to  160 v 

or 6 A ,  with a maximum power output of 240 W) . 
Operating characteristics for the modified ion source a re  

2-4 
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essent ia l ly  the same as those described earlier. The bas ic  parameters of 

operation have not been changed. 

2 . 2 . 2  Extraction and Focusinq 

Rather than continue with the multiple power supply 

arrangement to control the extraction and focusing of t h e  ion beam, it was 

desired to  obtain t h e  lens  potentials from a s ingle  power supply by means of 

a voltage divider network. A ten-stage transistor chain divider was designed 

and built expressly for th i s  purpose by Northeast Scientific Corporation, It 

divides t h e  input voltage into ten equal increments, from which the desired 

voltages may be obtained either directly, or by switching a ten-turn poten- 

tiometer across  two adjacent t a p s  and adjusting the potentiometer for fine 

control. Figure 4 i l lustrates the basic stage of the divider chain and 

indicates how the outputs are  obtained. 

The advantage of a transistor voltage divider over a 

purely resist ive one is that  it can provide a number of independent outputs 

from a single,  regulated chain,  thus giving better stability with lower power 

dissipation. Unfortunately, the unit is a prototype and has  been susceptible 

to damage by accidental  short circuits or high voltage transients.  Protective 

circuits have been added in a n  attempt to prevent further breakdown, but 

only continued use  will t e s t  their success. 

The relationship of the voltage divider and its outputs 

to the  rest  of the system is shown in Figure 2.  It should be noted that t h e  

divider receives its input voltage either directly from the Lens Control Power 

Supply, or with a 400 v drop through the  chopper. The above three units 

(housed within grounded cases) float at a potential above ground, determined 

by t h e  Beam Potential Power Supply. This allows the beam to  be extracted, 

focused and mass analyzed at a fixed energy (nominally 2 keV), then retarded 

to an  energy established directly by the  Beam Potential Power Supply. A l l  

col l is ion measurements may therefore b e  done at ground potential, and only 

2-6 
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one voltage must b e  changed to alter the coll ision energy. 

2 . 2 . 3  Mass  Analysis 

Design and construction of the  mass analysis  region was 

described in the earlier Interim Scientific Report: the only changes made s ince  

then have been the addition of teflon insulating material around the  drift-tube, 

and installation of a magnetic shield (sandwiched N e t i c  and Co-netic shee ts ) .  

The latter a l so  creates a physical barrier to prevent personnel from contacting 

the drift-tube, which may be a t  high voltage during beam operation. Results 

of operational tests and measurements will b e  given later. 

2 . 2 . 4  Beam Retardation 

The final ion energy is determined by the net  potential 

drop between the plasma in which the ions a re  formed and the grounded 

coll ision chamber. The potential distribution in a plasma discharge is such 

that  t he  plasma boundary is within a few volts of the  anode potential, the  

difference being called the "anode fall" (References 2 & 3 ) .  Positive ions 

extracted from the  plasma may therefore be assumed to originate essent ia l ly  

at anode potential. Again referring to Figure 2 ,  we see that th i s  is estab- 

l ished by the Beam Potential Power Supply, the output of which is a common 

reference potential for all other ion source and lens  voltages. 

The function of t h e  retarding lens  is to provide some 

means of control over the beam trajectory as it is decelerated between the 

exit apertures of the  drift-tube, where it has  the energy imparted to it by the 

anode-extraction electrode potential drop, and the  entrance to the grounded 

coll ision region. The geometry used is shown in Figure 5 .  Deceleration 

takes  place in two stages: the first is between the  drift-tube exit slit and 

the  entrance of a field free cylinder, the  second between the cylinder and an  

apertured plate a t  ground potential. The potential of the field-free region is 

set by one of the  voltage divider outputs. I t  is adjusted for best focusing 
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and collimation of t h e  beam a s  measured by a Faraday collector in the 

coll ision region. The action of this retarding lens  is very similar in prin- 

c ipal  to that described by Neff (Reference 4) except that his field-free region 

was maintained at t h e  final beam potential, and served as the first  element 

of an  einzel-lens array for t h e  beam focusing (see Figure 5).  

2 .  2 . 5  Beam Modulation 

I t  was mentioned in the introduction to  this section that 

modulation or chopping of t h e  ion beam is a desired feature. Since we are  

dealing with a beam of charged particles, it seems reasonable to  chop the 

beam by electronic application of periodic defocusing or stopping voltages to  

the lens system preferably in a square wave-shape. In the first Interim 

Scientific Report, it was proposed to apply t h e  modulation signal to  the  

center element of the einzel  lens ,  and tests indicated that this was feasible.  

The potential distribution in a three-aperture einzel lens ,  such as  we have, 

exhibits a saddle point a t  the center of the lens  (References 5 & 6). In order 

for t h e  charged particles (positive ions) to be  totally reflected,  the axial  

potential at this point m u s t  b e  positive. Reference 6 gives an expression 

for the cri t ical  potential which must  be applied to the center lens element 

for this condition to be satisfied: 

1 v2 
v = -  

-1 z 
Z 0 tan (e) C 

- 
R 

is t h e  potential of the outer electrodes (equal to  the  
incident beam energy) , 
is t h e  separation between lens  elements, and 

is t h e  radius of the center aperture. 

Our geometry and extraction voltage is such that V2  = - 2 kV (relative to the 

plasma),  Z = 0.75", and R = 0.25", which gives for the critical potential, 

V 540 v.  Thus, it would be possible to chop the beam by switching the 

v2 where 

0 
Z 

R 

0 

C 
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center einzel lens  electrode between + 540 v (or greater) and the voltage 

(about - 1000 v) for which the proper focus is achieved, where both voltages 

a re  referenced to the  plasma. This requires either two power suppl ies ,  or 

the  u s e  of a voltage dividing arrangement such as the zener diode shown at 

the chopper in Figure 2 .  

It is apparent that a grid across  the  center aperture would 

cause  the beam to b e  reflected a t  a lower repelling voltage. This possibil i ty 

must be  rejected,  however, s ince the transmitting mode potential distribution 

would be drastically affected (the saddle point would be destroyed),  resulting 

in a negative focal length. 

An alternative chopping method, which may be used with 

or without grids,  is to apply the repelling potential to  the outer einzel 

electrodes.  Although the  critical potential has  not been evaluated for this '  

case, geometrical arguments indicate that even without grids the repelling 

voltage required is less than for the case described above. 

The heart of the chopping circuit is shown in Figure 6.  

The Lens Control Power Supply output is attached to terminals 1 and 2 .  I ts  

output minus 400 v (dropped by two 1N3015A zener diodes) is applied to the 

voltage divider input, terminals 3 and 5. The 0 .8  tap from the divider is 

brought into t h e  chopper circuit a t  terminal 4.  The function of the chopper is 

to provide an  output which alternates in potential between those of terminals 

1 and 4 ,  which are reflecting and focusing potentials respectively. This is 

done by applying a modulation signal A and its c o m p l e m e n t r t o  the grids of 

the  two tubes T 1 and T 2 ,  so they alternately conduct and turn off. When 

T 1 conducts,  high voltage diode D 1 is forward biased and the output is at 

the  potential of terminal 4. When T 2 is conducting, it drops only a small 

voltage and the output r i ses  close to terminal 1. In this case D 2 is forward 

biased and D 1 is cu t  off. The currents through the  tubes are  i l  and i 

respectively.  Typical operating voltages a r e  indicated , measured relative 
2 
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to the  plasma or "reference ground". The clmit shown floats with respect 

to true earth ground by a voltage determined by the Beam Potential Power 

Supply (See Figure 2 ) .  

2.3 Operational Tests 

In order to verify the operation of each stage of the apparatus 

and to study the system parameters, beam measurements were made as 
required. The data  obtained were used as design inputs for following stages, 

in accord with the semi-empirical approach adopted a t  the s tar t  of the  project. 

Figure 7 shows the geometry of the  tes t  setup and the detector array used for 

all current measurements. The detector array may be moved along its ax i s ,  

or rotated about it. 

2 3 .1  Lens and Magnet Operating Conditions 

It was not necessary or possible to make completely 

independent tests of the magnetic analyzer, s ince  t h e  ion source and lens 

system were needed to provide a n  input. Consequently, t he  three were 

studied together by means of their effect on the  beam behavior. Measured 

data are illustrated graphically in  Figures 8 - 11. Because of t he  great 

interplay between the various system parameters, t h e  beam was generally 

tuned for best characterist ics after a particular parameter was set. For 

example, in studying the properties of the focused beam a s  a function of 

solenoid magnet current, t h e  lens  and analyzer magnet were retuned each 

t i m e  the solenoid current was changed s ince  we wanted "best" beam vs  the  

parameter. 

The conditions under which the data were obtained were: 

argon gas  a s  the charge material, a 2 keV extraction energy, the original 

ion saurce  discharge chamber with a U-shaped filament of .040" t a  wire, a 

''home made" voltage divider arrangement with maximum outputs of - 350 v, 

and a fixed anode voltage of 76 v .  Operating, conditions for each case are  

+ 
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given on the graphs. 

The following general observations may be  made: 

1. Assuming uniform current density in the  beam, the fall- 

off rate shown in Figure 8 leads to  an upper l i m i t  of 2 0 half-angle 
0 of divergence: that it is less then 3 

firmed by the fact that  a l l  current passing through the slit in 

detector #1 is collected by tab #S. 

(.05 radian) is a l s o  con- 

2 .  

much for different "gap" lengths; this is again indicative of the 

fact that t h e  beam is nearly parallel. 

Focusing conditions for maximum beam do not change 

3. Best focused beam current and bes t  beam efficiency are 

obtained using the minimum anode current, gas flow, and axial 

magnetic field for which a s table  plasma can be  maintained. 

4 .  

10 mm slit with a divergence less than . O S  radians. 

5. 

at 2000 v extraction potential. 

About 60% of t h e  beam can b e  focused through a 2 mm x 

+ 
Beam currents up to  6 pA or more may be  obtained for A 

6 .  

presented on graphs are consistently reproducible. 

The above results and the general nature of the data 

2.3.2 Mass  Scans and Resolution 

By scanning the magnetic field of t he  mass analyzer so 

the beam moves across the slit in detector #1, we can  get an indication of 

t he  mass resolution of the system, The  data plotted in Figure 1 2  represent 

such  a scan .  The magnetic field is proportional to  the current (neglecting 

hysteresis  and core saturation, which a re  small for a limited range of scan) ,  

and can be related to  the ion mass and charge by the equation 
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where 

. 

r = radius of curvature (cm) ,  
q = number of elementary charges carried by ion, 

B = magnetic field (kilogauss), 

M = particle mass (AMU) , 

V = energy (keV). 

t 
The mass scale is a l so  indicated on the  figure. We observe tha t  a similar 

mass peak centered a t  44 AMU would make no appreciable contribution to  t h e  

A peak at 40 AMU, corresponding to  a system resolution of better than R = 10.  

(In mass spectrometry, peaks a re  considered to  be resolved if  the  intervening 

valley does not exceed 10% of the  sums of the  peaks.  This is a more strin- 

gent requirement, for which the  resolution indicated by the plotted scan  

would be  R =: 8. ) The above result is only an  approximation and may be  

taken as a lower l i m i t  of resolution for the production of an uncontaminated 

ion beam. 

+ 

A true measure of the  resolution could be  obtained by 

scanning the mass peaks across  a s l i t  located a t  the analyzer focal plane. 

Such a slit is required in any c a s e  in order to limit all but the desired mass 

from being transmitted through the  rest of the system and into the  collision 

chamber. To  improve the resolution it is necessary tc! either provide a 

sharper focus at the analyzer object plane,  or to place a limiting aperture 

(slit) at that  location. Better defined images may then b e  formed, without 

having changed the dispersive characterist ics of t h e  analyzer. 

Complete field scans  were a l so  made to  see what mass 

peaks could be observed and identified. Fifteen to twenty peaks were 

detected,  of which the more important are 

A' (40 AMU), 4 . 4  x 

A++ (40 AMU) ,  8 .0  x 
A; 

A; 

Ni (28 AMU),  2 . 4  x A' 

A+ (36 AMU), 2 . 3  x A; 
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CO; (44 AMU), 1 . 3  x 

36 Note that A40 and A 

are  in the ratio 320:l. 

A. 

were resolved; the natural abundances of t hese  isotopes 

2.3.3 Retarding Lens Operation 

By adjusting t h e  potential applied to  the cylindrical 

element of the retarding lens  (see Figure 5) it is possible to  control the ion 

beam focus as its energy is reduced. The moveable detector array was used 

at the retarding lens  output to  measure the  beam current and focal properties. 

The beam could be slowed to  about 100 e V  with little or no loss  of intensity. 

The beam divergence was somewhat affected, however, and depended strongly 

on the retarding lens  sett ing.  For any given energy it was possible to  m a k e  

the beam practically parallel (i. e . ,  independent of "gap") ,  accompanied by 

some loss of intensity. 

2.3.4 Iron Beam Operation 

Iron beams were run on several  occasions,  with no un- 

expected difficulties. The procedure used was to start an argon plasma in 

the usual way, and then gradually increase the power (by means of the heater 

coil) while decreasing the gas flow until the  plasma could be  sustained on 

vaporized material alone. The initially used charge material was a common 

nail .  The mass spectrum which resulted was dominated by sulphur peaks.  

Replacing th i s  by a rod of 99.98% pure iron resulted in a large F e  mass peak 

and only a few minor contaminants which were rejected by the analyzer. 

+ 

The intensity of t he  iron beam was roughly a factor of 

3 lower than the typical argon beam. Lower efficiency a t  all stages is to b e  

expected because of the heavier mass, which may account for the major part 

of the  reduction. 

retardation have been prevented by problems with other parts of the  apparatus. 

Detailed measurements of the iron beam properties and 
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2.3.5 Chopper Operational Tests 

A prototype version of the electronic chopper shown in 

Figure 6 was tested using the center e inzel  electrode for beam modulation. 

The  repelling potential applied was only 200 v ,  instead of t h e  540 v cal- 

culated.  Nevertheless, t h e  beam w a s  completely stopped (or defocused) for 

t h e  "off" portion of the cyc le ,  and was transmitted as  usual during the  "on" 

phase.  The beam signal did not faithfully reproduce t h e  chopper output 

waveform, however, but instead exhibited rather slow and irregualr r i s e  and 

fall t i m e s .  This will not be a serious problem because of the detector 

arrangement to be  used. 

The  final version of the chopper has  been built,  but has  

not ye t  been successfully operated due to component failure at high voltages. 

It is believed that  the  problems have been solved and that  the unit will be 

successful  in its next test. 
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3 . 0  COLLISION REGION FOR Fe' -. N2 EXPERIMENTS 

The first experiment to be performed will be  a determination of the 
+ 

emission cross  sections for Fe 

veloci t ies .  The preceeding section deal t  with t h e  production and control of 

the ion beam. 

its facilities to  handle the target gas,  measure the required parameters, and 

detect the radiation produced. 

impinging on an N target a t  meteoric 
2 

In this section we shall d i scuss  the target chamber, including 

3 .1  Mechanical Desiqn of the Collision Chamber 

Besides being a chamber to retain the target g a s ,  t he  collision 

chamber incorporates t h e  following features: an entrance slit to admit and 

collimate t h e  beam, while minimizing gas  effusion; a Faraday cup to  measure 

ion beam intensity: a window to allow photons produced to  be  transmitted to  

a monochromator: an inlet valve for the  target gas: a valved connection for a 

McLeod gauge; and electrical  feedthroughs for the Faraday cup and other 

electrodes that will be required. 

temperature-sensing device to  measure gas  temperature, a collector for 

charge-exchanged slow ions  which will be  produced, and optics to  introduce 

light from a standard lamp for detector system calibration. 

Still to  be added are  a thermistor or other 

The collision chamber and i t s  accessories  were shown diagram- 

matically in Figure 1. The chamber cons is t s  of a 4" i . d . ,  heavy wall 

aluminum tube inserted right through the experimental chamber vacuum 

housing, and having ports at both ends. A piece of copper shim, having an 

etched slit 1 mm x 10 m m ,  is clamped over a s lot  in the chamber wall to a c t  

as t he  beam aperture. The Faraday cup (to b e  described later) is mounted on 

teflon supports opposite t h e  entrance slit. A 1 1/8 diameter viewing window 

is mounted on the top of the chamber, directly over the tube center and in 

l ine with the beam. 

ports ,  as will be  the  standard l a m p  window. 

Gas and electrical feedthroughs a re  mounted on the end 
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Certain modifications or additions may b e  required. 

it may be necessary to  install  an ion beam collimator and/or an aperture in 

the optical pa th ,  to make the  s l i t s  and  Faraday cup moveable from outside 

the vacuum system, and to  reduce the entrance slit s i ze .  Judgement will 

be  reserved on these matters until more data a re  available.  

For example, 

3 . 2  Faraday Cup 

The Faraday cup consis ts  of three electrodes,  insulated from 

each other and mounted on teflon rails. The rai ls  are  attached to the inside 

wall of the collision chamber. 

rails  for alignment. 

The cup assembly may b e  moved along t h e  

The first electrode is an aluminum plate with a 1/16" x 9/16'' 

slot through which t h e  beam passes. In operation, i t  is either grounded 

directly or through a microammeter. Its purpose is to  measure the outer 

fringes of the beam, thereby establishing a geometrical l i m i t  on the inter- 

action region. For absolute cross section measurements it is necessary that 

the primary ion beam current collected by this  plate be much less than the  

total  beam current. 

electrical  focusing of the beam, it will be necessary to  place an additional 

beam collimator before the interaction region. 

I t  is is not possible to achieve t h i s  condition by proper 

The  second electrode has a slightly larger slit (1/8" x 5/8") and 

serves t h e  dual functions of mechanical spacer  (1/4" thick) and secondary 

electron suppressor. 

is normally biased a few volts negative to  prevent secondary electrons from 

leaving the cup collector itself. 

It is shadowed from the ion beam by the  first plate. I t  

The cup collector is a closed volume except for its entrance 

aperture (3/16" x 3/4") .  

to measure the ion intensity. 

It is grounded through a microammeter and serves 

An argon beam has been run through the  apparatus and detected 
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c 

The characterist ics when t h e  beam was retarded were identical to  

those described earlier; i . e . ,  there was little loss  of total  beam intensity 

down to  a few hundred electron volts. 

by t h e  cup. There was some los s  in the  maximum attainable beam current 

compared to  tha t  obtained with the detector array and shown in Figures 8 - 11. 

Of a total current of about 4 $4 t o  all collectors of t h e  cup, nearly 3 $4 could 

be  focused through the slit and into the main cup collector. More studies 

will be  done to  see if the entire beam can be  directed into the cup without 

striking the entrance plate.  

A variable negative voltage applied to  the suppressor electrode 

was observed to have the expected effect. Below 1000 e V  beam energy, 

little or no change in measured intensity resulted as the  suppressor voltage 

was increased. Above t h i s  energy a sl ight decrease in current was observed, 

representing the suppression of secondary electrons,  up to a maximum effect 

of 10% to 15% at t h e  maximum attainable beam energy of 3 keV. Only 10 v 

to  15 v suppressor voltage was required to reach the current plateau. 

3 . 3  Gas Handlinq System 

A gas-handling system, including an auxiiiary vacuum system, 

was built to  control the gas  flow to the collision chamber. 

schematically in Figure 13. 

drawing. 

gas  can be  supplied to  the ion source or to  a charge-exchange chamber, i f  

such a procedure is necessary for future experiments. 

can  be used to  measure the pressure in the auxiliary system or in the target 

chamber. 

I t  is shown 

The  operation of the system is evident from the 

Two storage bulbs and valving manifolds a re  provided so a second 

The McLeod gauge 

3 . 4  Optical System Desisn 

The system to  measure the optical radiation produced in a 
col l is ion may be  divided into three bas ic  units: fore-optics to collect and 
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focus the light, a dispersing element to separate the  spectral  components, 

and a radiation detector. 

3 .4 .1  Fore-Optics 

The design of a light channeling system depends on t h e  

wavelength range desired,  the particular dispersing device chosen, and the 

geometry of the apparatus. We here anticipate the selection of the disperser ,  

which is a monochromator of optical speed f/5.3 and with slits adjustable 

up to  2 c m  high by 2 mm wide. For best  efficiency, the radiation should f i l l  

both the field-of-view of t h e  monochromator and i t s  entrance s l i t ,  which is 

equivalent to  placing the  entrance slit a t  t h e  source of radiation. Neglecting 

transmission l o s s e s ,  no optical system can do better. 

It is possible to  increase the radiant f lux by increasing 

the source brightness , however. 

volume shown in Figure 14,  the useful photon flux through slit "A" is greater 

than for IIB". 

physically impossible to  place the monochromator slit a t  the interaction 

region, its slit m u s t  be  imaged there by a lens/mirror system, resulting in 

the layout shown in the figure. The 45 mirror is used to  rotate the image 

so the  monochromator can be  mounted in its normal position, and the beam 

image is reduced by the l e n s  so  a narrower slit can be used to  improve 

spectral  resolution. The  lens is large enough to  fill the field-of-view, and 

the slit is just  filled by the source image. 

Therefore, for the uniformly radiating 

This  is just  the geometry of our beam experiment. Since it is 

0 

3.4.2 Dispersing Element 

Aside from certain mechanical features and cos t  restric- 

t ions 

possible  wavelength range, optical efficiency, and field-of-view. The  unit 

chosen was the McPherson Model 218, which is a high-efficiency, grating 

monochromator with an  f/5.3 optical system and a scan range of 1050 2 to 

i t  was desired to choose a spectrum analyzer with the greatest 
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1 p with its standard grating. I t  also has  the useful features of automatic 

s can ,  adjustable slits , and evacuable housing. Photomultiplier detectors may 

eas i ly  be  added. The observable wavelengths are not limited by the mono- 

chromator , but by quartz optics and photomultiplier cathode response.  

In order to make absolute measurements of t h e  radiation 

intensity,  we must have slits wide enough to  transmit the entire image of the 

interaction region, or alternatively know exactly what fraction they a re  re- 

jecting. In operation, the s l i t s  can b e  opened until no increase in signal is 

observed. For better spectral resolution they can b e  partially closed at the 

cos t  of introducing uncertainties in absolute intensit ies.  

3.4.3 Radiation Detector 

In accord with the monochromator specifications , a 

highly sensi t ive photon detector with a broad spectral  response is required. 

Since the planned system is to count s ingle  photon pulses rather than 

measure aggregate currents (see Section 4) it is a l so  desired that t h e  

detector have a high gain,  fast transit t i m e s  with little t i m e  spread, and a 

well-defined pulse height distribution for single photoelectrons. An 

Amperex 56 T W P  photomultiplier w a s  the bes t  choice of available tubes for 

the  purpose. 

1800 8, and is useful t o  above 0 . 7  p. 

a tube with S - 1  cathode response will be  required. 

b e  mounted directly on t h e  monochromator exit flange in a coolable, shielded 

housing. 

I t  has  an "extended" S-20 cathode for UV response down to  

For measurements from 0 . 7  p t o  1 . 0  p 

The photomultiplier will 

3.5 Optical Calibration 

The optical system described above must b e  calibrated by 

comparison with a source of known spectral  distribution and output, such 

tha t  the calibration light pas ses  through the same optical  system as  radiation 

from the coll isional interaction region. A convenient and reliable source for 
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the  range 2500 8 to  several  microns is a tungsten ribbon lamp of the type 

used as a radiance standard by the National Bureau of Standards. 

When an  aperture is placed as  c lose  a s  possible to  the 

exit window of the lamp, it is approximately an  f/50 system. 

make this  fill t h e  field of the  monochromator it is necessary to  u s e  a reducing 

lens  to produce a more divergent beam passing through the collision region 

(the quantity known as spectral  radiance, power per unit wavelength per 

unit area per steradian, is conserved). This situation i s  a l so  shown in 

Figure 14 .  The calibration light will  therefore appear to  radiate from a point 

source located somewhere in the volume of the interaction region. It will be  

necessary to  map the response from all parts of the interaction region and 

apply a correction to  the observed s ignal  to  account for variations. For a 

well  designed optical system with sl ight aberrations, t h e  correction should 

In order to  

b e  s m a l l .  

Calibration for t he  region below 2500 8 is much more 

One possibility is to use a source which produces a se r ies  of difficult. 

spectral  l ines of known intensity ratios,  and which a re  distributed in such 

a way that they may be  used to  extrapolate the system response to  lower 

wavelengths. 

for these lower wavelengths. 

More work will be  done to establish a calibration procedure 
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4.0 PROPOSED OPERATING PROCEDURE: 

In order t o  evaluate the  emission cross  sect ions versus energy for 

radiation produced by t h e  ion-molecule col l is ions,  it is necessary to  have 

the following information pertaining to t h e  interaction region: 

1. ion energy, 

2 .  number of incident ions, 

3. path length under observation, 

4 .  target density,  

5.  number of photons produced a t  a particular wavelength. 

Of course we must a l so  know the incident particle and target gas  species: 

for th i s  reason we included the mass analyzer and will u se  high-purity gases 

in the  collision chamber. 

I tems  1 ,  3 and 4 above, as w e l l  as the  observed wavelength, a r e  

established by the  system parameters and geometry. Target gas density 

will be  determined from the observed pressure and temperature in the collision 

chamber. The pressure will be measured by an  electronic (capacitance) 

manometer, calibrated against  the McLeod gauge using a non-condensible , 

inert gas such as  helium (Reference 7) .  Thermocouples or thermistors 

mounted on the walls of t h e  collision chamber will b e  used to measure the 

temperature. 

to the  numbers of incident ions and resulting photons respectively. 

It remains to relate the Faraday cup and photomultiplier outputs 

4 .1  Detector Electronics 

4.1.1 Photon Measurement 

The problem of determining the number of photons pro- 

duced at the interaction region breaks conveniently into two parts: (1) 

determination of the transfer function of the optical  system up to  t h e  output 

of t he  photomultiplier and (2) processing of the  photomultiplier output in a 

convenient way. The optical  system and the calibration method, which will 
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yield the  total transfer function, have already been d iscussed .  We now 

consider how the photomultiplier output is to be  handled. 

We  recall  that  the ion beam is to b e  chopped so that 

select ive detection methods may be employed to  separate  the modulated signal 

from random noise  and any d . c .  background that may be  present.  Of several  

widely used detection techniques,  all of which are phase-locked for good 

noise  rejection, the u s e  of a gated pulse-counting procedure appears to be  

most useful for our purposes (References 8 and 9 ) .  Our estimated photon 

arrival rates  a re  low enough (see Section 4 . 2 )  to b e  well  within the capabil- 

ities of fast counting circui ts ,  so we can  simply count the output pulses  in 

one or the other of two scalers, depending on the  modulation phase.  

also worthy of note tha t  counting methods are  less suscept ible  to noise  

pickup and zero drift than are  other demodulation systems.  

It is 

The procedure is to amplify the  pulses ,  to remove the 

low-level noise  pulses  (of amplitude less than that  corresponding to single 

photoelectrons) by threshold discrimination, and to  count the discriminator 

output by dual scalers gated such that one records "beam off" counts,  the 

other ''beam on".  One sca le r  will thus indicate signal plus background, 

t he  other background only, and randomly occurring noise  pulses  will have 

been averaged between them as  part of the  background. 

given by the difference S , with a standard deviation S + B.  

in detection methods fi l ter  out the d . c .  background and noise  so that infor- 

mation is lost. 

The signal is then 

M o s t  other lock-  .1 

Since the chopped ion beam has  been observed to have 

poorly defined r i se  and fall-times, it would be  useful to suppress data during 

those  intervals and to accumulate counts only when the beam is completely 

' 'off". 

p u l s e s ,  and is a great advantage not available with other lock-in methods. 

This is eas i ly  accomplished by proper control of the scaler  gating 
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4.1.2 Ion Current Measurement 

We wish to  measure the ion beam intensity during the 

same t i m e  intervals for which t h e  scalers are  gated on, Two possible means 

are  available to measure t h e  beam "on" and beam "off" ion currents,  while 

avoiding the irregular r i se  and fall times. 

calibrated oscilloscope to  measure the desired part of the waveform a s  it 

appears across  a precision resistor on the Faraday cup output. A second 

method, which h a s  many advantages, is to u s e  a gated voltage measuring 

device which samples only a selected portion of a repetitive waveform. An 

example of such a device is t h e  Model CW-1 Boxcar Integrator manufactured 

by Princeton Applied Research Corporation. 

The first  is to  simply u s e  a 

When its t ime-base  scan  is triggered in  phase with a 

repetitive signal applied to  its input, the  Boxcar Integrator can sample and 

average any part of the input waveform determined by a variable delay,  

variable width gate.  (Long RC integration t i m e s  may be  used to  recover t h e  

gated portion of t h e  signal f rom high noise  levels ,  i f  that situation occurs .) 

The major advantage of the instrument for our application, however, is that 

it can  b e  used in a n  internal t ime-base  mode, for which both time-base and 

ga te  outputs a re  available.  

tion rate and to  gate  the sca le rs ,  with very little auxiliary circuitry. We can 

then determine the number of ions (current x "on" t i m e )  and the number of 

photons (counts x transfer function) for identical t i m e  intervals , which is a l l  

t he  information we require. 

It can therefore be  used to  generate our modula- 

4 . 2  Estimated Siqnal 

It is informative to estimate the magnitude of t h e  photon count 

rates we can expect. We have 

% = R x u X x L x n  I 

= numbers of photons produced per second at wavelength 

5 = number of incident ions per second 

where 
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L = length of interaction region 

n = target gas density 

= emission cross  section for photon at wavelength X 

For our example, let us  assume R I 2 
u - 10-18crn , L = 1 c m ,  and t h e  target gas  pressure is 10  torr. Under 

these  conditions we compute 

- 1013 particles per second ( 1 A) , 
- 3  

x 

8 Rx =: 3.5 x 1 0  photons/sec. 

The number of counts per second a t  t h e  scalers  (neglecting back- 

ground, which should be  small) , is given by N = 5 x F ,  where F is the 

optical  system transfer function: 

F =: ( A / 4 7 T )  x T x Q 

where A = solid angle collected by the opt ics ,  

T = transmission of the opt ics ,  

Q = quantum efficiency of the photocathode. 
-3  The geometry of the optical design gives * =: 7 x 10 steradians.  We ' 

assume T - 100% and Q - 1%. Then we get for t h e  count ra te ,  N =: 2 x 10 

pulses  per second. 

3 

A similar calculation based c?n the geometry and the known 

spectral  output of the standard lamp indicates that  i t  will produce count ra tes  

exceeding 10 

neutral density filter. 

would be  distributed about the mean counting rate  by a Poisson distribution, 

it is necessary to  resolve counts some 100 t i m e s  fas ter  than the mean to  

achieve 1% accuracy in t h e  calibration statistics. 

necessary to have very f a s t  pulse counting circuitry, such as is available 

from only a few sources. 

5 3 counts per second, even attenuating a factor of 10 with a 

Since the photons would be  emitted randomly, and 

For this reason it will be 
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5 . 0  PRESENT 6 FUTURE EFFORT 

. 

Most of what h a s  been described in t h i s  report is pertinent to  the 
+ 

-+ N 2  experiments which will determine the emission cross  sect ions for F e  

coll isions.  Iron beams have been run through t h e  apparatus and detected at 

t h e  Faraday cup, and a s i m p l e  detector system h a s  been set up to observe 

collisional excitation produced when the beam impinges on a gas leaked into 

t h e  collision chamber. I t  is expected that these s i m p l e  measurements will 

take place within t h e  next couple of weeks,  and will a id  in "tuning up" the 

apparatus for measurements of the spectral features and emission cross  

sect ions.  

Much of t h e  major equipment needed h a s  been ordered, and is already 

being received at AS&E. The capacitance monometer and fas t  counting equip- 

ment are still to  be  ordered, as a re  the photomultiplier base  and housing and 

the calibration equipment. I t  is expected that  several  weeks will be  required 

to set up the new equipment. There will undoubtedly b e  additional setup 

work necessary before t h e  optical sys tem and internal geometry of the 

coll ision chamber take final form. W e  expect tha t  preliminary spectral data 

will be forthcoming by t h e  end of June, and that t h e  measurements of absolute 

cross  sect ions will b e  under way by mid-summer. 
+ 

Meanwhile, design studies will be  started for the N -+ Ca emission 2 
cross  section experiments. They will uti l ize the same apparatus and optical  

system as t h e  Fe  -, N experiments, except that the collision region will b e  

replaced by a calcium oven and detector. 

center  about t hese  i t e m s .  

but a detector of known efficiency may be  another matter. 

+ 
2 

M o s t  of t h e  design effort will 

N o  difficulty is anticipated in producing t h e  beam, 
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7.0  APPENDIX 

A New Technology report is to  b e  submitted under separate cover by 

the A S G E  New Technology Officer. 
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